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ABSTRACT: Breathomics, a growing field in exposure monitor-
ing and clinical diagnostics, has faced accuracy challenges due to
unclear contributing factors. This study aims to enhance the
potential of breathomics in various frontiers by categorizing
exhaled volatile organic compounds (VOCs) as endogenous or
exogenous. Analyzing ambient air and breath samples from 271
volunteers via TD-GC × GC-TOF MS/FID, we identify and
quantify 50 common VOCs in exhaled breath. Advanced
quantitative structure−property relationships and compartment
models are employed to obtain VOCs kinetic parameters. This in-
depth approach allows us to accurately determine the alveolar
concentration of VOCs and further discern their origins, facilitating personalized application of breathomics in exposure assessment
and disease diagnosis. Our findings demonstrate that prolonged external exposure turns humans into secondary pollutant sources.
Analysis of endogenous VOCs reveals that internal exposure poses more significant health risks than external. Moreover, by
correcting environmental backgrounds, we improve the accuracy of gastrointestinal disease diagnostic models by 15−25%. This
advancement in identifying VOC origins via compartmental models promises to elevate the clinical relevance of breathomics,
marking a leap forward in exposure assessment and precision medicine.
KEYWORDS: volatile organic compound, breath, origin identification, environmental exposure, disease diagnostics

1. INTRODUCTION
Breathomics, an emerging interdisciplinary field integrating
physiology, medicine, chemistry, and engineering, holds great
potential for noninvasive diagnostics and therapy monitor-
ing.1,2 This field initially focused on discovering disease-
specific biomarkers by analyzing trace gases in human breath.3

However, despite the detection of over 1,000 volatile organic
compounds (VOCs) in the past decade, none have achieved
significant clinical breakthroughs in cancer detection.4 This
shortfall stems from the failure to discriminate endogenous
VOCs with truly diagnostic potential from exogenous VOCs in
exhaled breath.5

The high sensitivity of current methods in exhaled breath
analysis often leads to the inadvertent detection of non-
endogenous analytes.6 They need to be regarded as exogenous
VOCs, which act as confounders in disease diagnosis.7

Therefore, exhaled breath analysis needs to consider the
transport dynamics and the potential interference caused by
exogenous VOCs.8 Exogenous VOCs are transferred across the
blood-air interface in alveoli during inhalation and sub-
sequently permeate bodily tissues via the circulatory system.9

Both these external compounds and endogenous VOCs diffuse
from the blood into the breath and are excreted during
exhalation.10 This process risks misclassifying exogenous
compounds as endogenous, particularly in comparative studies

across different diseases or geographical locations, leading to
potentially erroneous associations with specific diseases.11

Furthermore, the chronic inhalation of environmental
pollutants, and their subsequent absorption, metabolism, and
accumulation in the body, complicates the interpretative
reliability of breathomics in assessing human health.12

Therefore, a key challenge lies in determining whether a
VOC detected in both exhaled breath and room air is of
internal origin or is merely a result of external contamination.
Researchers have responded to the challenge with three

different strategies.13 Some studies have overlooked environ-
mental factors, reporting solely on observed exhaled VOC
concentrations, which may yield false-positive results.8 Others
have required subjects to inhale filtered air, a method that is
not only cumbersome but also probably introduces new
contaminants.14,15 Recent innovative approaches, such as the
alveolar gradient (AG) and breath tracker algorithm, aim to
tackle background variability.16−18 However, the AG method,

Received: May 9, 2024
Revised: September 19, 2024
Accepted: September 20, 2024

Articlepubs.acs.org/est

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.est.4c04575
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

C
O

PY
R

IG
H

T
 C

L
E

A
R

A
N

C
E

 C
T

R
 D

C
M

T
 D

L
V

R
Y

 o
n 

O
ct

ob
er

 1
, 2

02
4 

at
 1

3:
58

:2
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhengnan+Cen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuerun+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shangzhewen+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shanshan+Dong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenshan+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.4c04575&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?fig=tgr1&ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.4c04575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


reliant on subtracting inhaled concentrations, often lacks
precision and requires environmental concentration adjust-
ments.19 The breath tracker algorithm, while effective in
processing real-time data from proton transfer reaction-time-
of-flight-mass spectrometry (PTR-TOF MS), falls short with
offline samples.20 Consequently, the development of more
precise and robust methods for identifying endogenous and
exogenous VOCs is essential to enhancing the practicality and
accuracy of breathomics.
The aim of this study is to precisely differentiate between

exogenous and endogenous VOCs using developed compart-
ment models and further evaluate their distinct roles in
environmental exposure and disease diagnostics. To achieve
this aim, we collected 271 exhaled breath samples along with
101 ambient air samples using standardized methods and
conducted nontarget breath analysis via two-dimensional gas
chromatography coupled with time-of-flight mass spectrometry
and flame ionization detector (GC × GC-TOF MS/FID).
Through the development of compartment models based on
blood-air partition coefficients (λb:a) predicted by a quantita-
tive structure−property relationship (QSPR) model, we
accurately determined the actual alveolar concentrations and
tissue distribution of VOCs. This approach allowed us to
compile a comprehensive catalog of endogenous and
exogenous VOCs in exhaled breath, exploring their implica-
tions in both environmental exposure assessments and disease
diagnostics. Our study revealed that while exogenous VOCs
presented challenges in clinical diagnosis, they offered valuable
insights in environmental exposure studies. Identifying
endogenous VOCs significantly improved the clinical utility
and accuracy of breathomics. Therefore, our research lays a
foundational theoretical framework for advancing breathomics
and opens new avenues for its broader application across
various disciplines.

2. MATERIALS AND METHODS
2.1. Demographics. The study was performed in agree-

ment with the Helsinki Declaration and approved by the Ethics
Committee of Fudan University (FE22139I). Informed
consent was obtained from all of the study participants.
For this study, we recruited a total of 271 human subjects to

ensure a robust sample size capable of producing statistically
significant results and facilitating a detailed analysis of the
influencing factors. The demographic details of the participants
were summarized in Table S1. We specifically excluded
individuals with active respiratory disease symptoms, such as
a productive cough or shortness of breath, as these could make
sampling uncomfortable and potentially skew the results.
Additionally, pregnant or breastfeeding individuals and those
who consumed alcohol daily were excluded from the study. To
maintain consistency in experimental conditions across all
participants, we controlled various factors. All subjects were
instructed to abstain from eating, drinking (except water),
using cosmetics, and exercising for at least 12 h prior to breath
sampling.

2.2. Sample Collection and Analysis. Exhaled breath
samples in this study were collected using a ReCIVA sampler
(Owlstone Medical, Cambridge, UK). The detailed procedure
for sample collection has been described in our previous
publications.21 Briefly, sample collection occurred between
8:00 a.m. and 10:00 a.m. following an overnight fast. For each
participant, we collected 3 L of breath gas at a flow rate of 200
mL·min−1. The exhaled VOCs were captured trapped on

multibed thermal desorption tubes containing Tenax/TA with
a Carbograph 5TD (Markes Biomonitoring Tubes, Markes
International Ltd., UK). Concurrently, environmental samples
were obtained by passing 3 L of room air through a thermal
desorption tube connected to the inlet of a hand-held air
sampling pump (EDKORS Ltd., China). Analysis of both
exhaled breath and environmental air samples was performed
using GC × GC-TOF MS/FID. The details of analytical
method have been summarized in Supporting Information.

2.3. Applicability Domain of QSPR Model. Applicability
domain (AD) of the QSPR model was delineated by using a
graphical approach, specifically through a Williams plot. This
plot is a representation of standardized residuals against the
leverage values of the compounds.22 Leverage, which is the
diagonal element of the Hat matrix in this context, was
calculated as follows

= [ ]h diag X X X X( )i
T

i
T

train i
1 (1)

where, Xtrain represents the training set; i = train, validation and
test set. AD warning limits were determined as three multiples
of standard deviation (of standardized residuals), and the
critical leverage value h*:

* = × +h K
N

3
1

(2)

where, K represents the number of molecular descriptors, and
N represents the number of observations.

2.4. Compartment Model. To accurately model the
distribution and dynamics of VOCs in humans, we developed
various compartment models tailored to λb:a. For VOCs with
λb:a less than 10, our model incorporated three compartments:
the lung, fat, and rest of the body. Notably, upper airways have
a significant impact on hydrophilic VOCs.3 Consequently, for
compounds with λb:a exceeding 10, we introduced an
additional bronchus compartment to our model. The compart-
ment models assumed that VOC production and clearance
mainly occur in the remaining body compartments, excluding
the fat compartment. Detailed mass balance equations for each
compartment were provided in the Supporting Information.
Physiological quantities cardiac output (Q̇c), fractional flow

bronchioles (qbro), fractional flow fat (qfat) for each subject
were estimated by PK-Sim software.23 Alveolar ventilation
(V̇A) was estimated from the empirical formula reported in
elsewhere.24 The blood-fat partition coefficient (λb:f) of VOCs
was estimated from the linear free energy relationship reported
by Abraham and Ibrahim.25 The derivation of the ratio of
mucus-air and mucus-blood partition coefficients (λmuc:a/
λmuc:b) was complex, and the detailed process was summarized
in the Supporting Information.

2.5. Health Risk Assessment. Health risk assessments
were performed by referring to the human health assessment
manual issued by the United States Environmental Protection
Agency (US EPA). The external exposure assessment estimates
the lifetime average daily dose (LADD) as follows:

= × × ×
×

LADD
C IR EF ED

BW LT
I

(3)

where, CI is the environment concentration of VOCs, ng·L−1;
IR is the inhalation rate (L·h−1); EF is the exposure frequency
(h·day−1); ED is the exposure duration in a lifetime (year); BW
is the body weight (kg); LT is the averaged lifetime (year).
Based on LADD, the noncancer risk of a chemical, hazard

quotient (HQ), can be expressed as
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=
× ÷

HQ LADD
RfC RfV RfBWext (4)

where, RfC is the inhalation reference concentration provided
by US EPA (ng·L−1); RfV is the reference daily inhalation rate
(L·day−1); Rf BW is the reference body weight (kg). The
calculation parameters are listed in Table S3−S4.
Given the lack of methods for assessing health risks from

internal exposure, we adopted an approach similar to that for
external exposure. By summing HQs across different age stages,
we calculated the lifetime noncancer risk of internal exposure.
This method allows for a comparison between internal and
external exposures.

= × × ×
×

LADD
AG IR EF ED

BW LTi
i i i i

i i (5)

where, i represents an age stage (i = teenager, young adult or
senior); AGi

’ is the corrected alveolar gradient of VOC (ng·
L−1).
The noncancer risk of a VOC for internal exposure can be

calculated by the following equation:

=
× ÷

HQ
LADD

RfC RfV RfBW
i

i i i
int (6)

The associated parameters used for calculating HQ from
internal exposure were summarized in Table S3−S4.
The cancer-associated risks from external and internal

exposure were calculated as follows:

= ×CR C IURext I (7)

= ×CR AG IURint (8)

where, IUR is the inhalation unit risk (ng·L−1)−1 (Table S5).
2.6. Fat Bioavailability. This study expressed the

bioavailability of exogenous VOCs using the ratio of VOCs
entering the fat to those inhaled.26

=

=
× ×

×
+

Fatbioavailability
VOCenteringthefat

VOCinhaled
C Q

C V

a c

I A

1
1 b f:

(9)

where, Ca is the arterial concentration (ng·L−1); Q̇c is the
cardiac output (L·min−1); V̇A is the alveolar ventilation (L·
min−1); λb:f is the blood-fat partition coefficient.

2.7. Statistical Analysis. The raw VOC data were
quantitatively analyzed by using an internal standard normal-
ization method. The k-means cluster was used to expand the
application of the breath tracker algorithm in the offline
samples. The number of clusters was optimized by the elbow
method. The experimentally measured λb:a from literatures and
molecular descriptors of 195 compounds were used to
construct the QSPR model based on genetic algorithm-
artificial neural network (GA-ANN). GA was implemented for
feature selection in the Chemdes descriptors set. ANN was
employed to describe the complex nonlinear relationships
between the λb:a and chemical structures. The predictive
efficacy of the GA-ANN model was assessed using the
coefficient of determination (R2), mean absolute error
(MAE), and root-mean-square error (RMSE). Random forest
(RF) algorithm was used to develop the disease diagnostic
models. The diagnostic model employed 5-fold cross-

validation to prevent overfitting. Diagnostic performance was
assessed by using receiver operating characteristic (ROC)
curves. The predictive power of the model was evaluated via
the sensitivity, specificity, accuracy, precision, recall, F1, and
area under curves (AUC).
All of the analyses were performed using R Studio (version

4.1.1, RStudio Inc., Boston, MA, USA).

3. RESULTS AND DISCUSSION
3.1. Inadequacy of Current Methods in Exhaled VOCs

Origin Determination. Breathomics research, which plays a
vital role in disease diagnostics, currently faces significant
challenges. A major hurdle is the difficulty in distinguishing
between endogenous and exogenous VOCs, casting doubts on
the reliability of biomarkers.7 To understand the state of
breathomics research, we performed a thorough search in the
Web of Science database from its inception until February 14,
2024, using “volatile organic compounds” and “breath” as
keywords. This search yielded 3,570 relevant articles covering
disease diagnosis, health monitoring, environmental exposure,
and other frontiers (Figure 1A). However, nearly all of these
studies (approximately 3,550) overlooked potential confound-
ing factors arising from the mixture of environmental
compounds with exhaled air. Less than 30 studies attempted
to differentiate between endogenous and exogenous
VOCs,11,27 highlighting a gap due to complex human-
environment interactions and the absence of effective methods
for tracing VOC origins.17 This methodological shortfall
increases the risk of misattribution, leading to breath analysis
results that are challenging to replicate or apply clinically.8

Acknowledging these issues is essential for advancing breath
analysis techniques. Consequently, we collected extensive
breath samples to evaluate and enhance the precision of
methods distinguishing endogenous from exogenous VOCs.
We recruited 271 volunteers from three research centers

between 2021 and 2023 to provide exhaled breath samples
(Figure 1B). These volunteers were categorized into teenager
(≤18 years), young adult (19−49 years), and senior (≥50
years) groups based on age.24 This stratification enabled us to
explore the impact of varying environmental exposure
durations and age-related metabolic functions on endogenous
and exogenous VOCs identification. Using GC × GC-TOF
MS/FID, we conducted a nontargeted analysis of the breath
and ambient air samples, identifying a wide range of VOCs. We
found 50 VOCs with an occurrence rate above 80% and
categorized them into chemical groups (Figure 1C). The
results indicated that alkanes (24%), aromatics (18%), and
ketones (18%) dominated the composition of exhaled breath,
followed by aldehydes (10%), alkenes (8%), acids (8%), esters
(6%), heterocycles (6%), and nitriles (2%). This diversity in
VOCs facilitated a comprehensive evaluation of origin
discrimination methodologies, with subsequent focus directed
toward elucidating the origins of these 50 VOCs.
The AG method is widely used to distinguish between

endogenous and exogenous VOCs due to its rapid
identification of environmental influences.28 However, its
magnitude and polarity can be affected by individual and
environmental variations.29 To improve reliability in identify-
ing endogenous compounds, we analyzed a large sample set
with the AG method, calculating peak intensity differences of
target VOCs in exhaled versus environmental samples.30 We
established benchmarks for differentiating endogenous VOCs
from exogenous VOCs through average AG and endogenous

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c04575
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c04575/suppl_file/es4c04575_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c04575/suppl_file/es4c04575_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c04575/suppl_file/es4c04575_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c04575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ratios. Typically, VOCs with an average AG > 0 and an
endogenous ratio >70% are regarded as endogenous. Our
analysis identified 16 VOCs meeting these criteria (Figure S1).

Conversely, VOCs showing a negative AG typically indicate an
environmental origin, as they are inhaled at higher levels than
they are exhaled.31 We found 17 VOCs with an average AG <

Figure 1. Current state and methods for exogenous and endogenous VOCs identification in breath researches. (A) Publication statistics on
differentiating exhaled VOCs origins. (B) Demographics and sample overview in this study. (C) Chemical classes of 50 exhaled VOCs accurately
identified and quantified by TD-GC × GC-TOF MS/FID. (D) Alveolar gradients and endogenous rates of 17 exhaled VOCs. (E) Breath tracker-
based cluster analysis for exhaled VOCs.
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0 and an endogenous ratio <30%, classifying them as
exogenous (Figure S1). However, 17 VOCs had ambiguous
classifications, with average AGs near zero or endogenous
ratios between 30% and 70%, making their origins uncertain
(Figure 1D). This uncertainty arises from the similarity in
concentrations of these VOCs in exhaled breath and
environmental air, compounded by individual and environ-
mental variations. Moreover, the current AG represents VOC
concentration after passing through the upper airways, not
directly from the alveoli, thus overlooking the effect of
bronchus on exhaled VOCs. Studies have shown that VOCs
with a high λb:a significantly interact with the water-like mucus
membrane lining the conductive airways, reducing the
concentration of hydrophilic volatiles as they move from the
alveoli to the airway opening.32 This discrepancy between
alveolar air and measured end-tidal air depends on factors like
airway temperature, perfusion, breathing patterns, and
primarily λb:a.33 Therefore, it is necessary to take into account
the physical and chemical characteristics of various VOCs and
convert exhaled concentrations to true alveolar concentrations.
Breath tracker algorithm offers an alternative method for

distinguishing endogenous from exogenous VOCs.20 However,
its use is limited to online PTR-TOF MS data. To broaden its
applicability, we developed a clustering approach inspired by
the breath tracker concept, using acetone and isoprene as
benchmarks for endogenous VOCs.18 This method involves
classifying compounds that cluster closely with these bench-
marks as endogenous, while those further away are deemed
exogenous. We applied k-means clustering on samples and
VOCs, optimizing the number of clusters through the elbow
function (Figure S2A). This process divided the samples into
five clusters, reflecting the chemical heterogeneity in exhaled
breath and the environmental air (Figure S2B). Our analysis
identified notable similarities between the two, indicating the
exhalation of compounds into the ambient air. We then applied
k-means clustering to differentiate between endogenous and
exogenous VOCs, categorizing 50 VOCs into four clusters
based on their chemical behaviors (Figure 1E). Acetone and
isoprene, indicative of endogenous VOCs, predominantly
formed one cluster, while unequivocally exogenous compounds
such as toluene, xylene, and ethylbenzene formed another. A
third cluster, containing three acids, overlapped with the
endogenous group, suggesting a link to microbiome
emissions.34 However, the algorithm faced difficulties with
compounds in middle clusters of mixed origins, highlighting
the need for more accurate methods to pinpoint VOC origins.
A comprehensive understanding of the processes that govern
VOC distribution and transport across different biological
matrices is essential to accurately identifying their origins.

3.2. Accurately Estimating VOC Kinetics for Compart-
ment Model Development. To improve the distinction
between exogenous and endogenous VOCs in exhaled breath,
we developed physiological-compartment-based kinetic
(PCBK) models. These models integrated environmental,
exhaled air, bronchial, lung, arterial, venous, fat, and remaining
body compartments through physiological parameters, dis-
tribution processes, and mass balance (Figure S3). Detailed
descriptions of the PCBK model were summarized in the
Supporting Information. By estimation of the actual alveolar
concentrations (CA), our models offer robust theoretical
support for identifying endogenous VOCs. Simulation results
showed that the λb:a, production (kpro) and clearance rates (kcl)
are crucial physicochemical parameters for CA calculation.

However, a comprehensive database of these parameters in
exhaled VOCs is currently lacking. Given the high cost, time
investment, and significant sample size requirements for
experimental determination, theoretical and computational
methods present a viable alternative for parameter estimation.
We developed a QSPR model using GA-ANN to predict λb:a.

This parameter significantly influences the uptake of
exogenous vapors and the exhalation of endogenous
compounds. The variability of λb:a in the human volatilome
can span over 12 orders of magnitude,35 indicating that
compounds with similar exhaled levels may have vastly
different concentrations in the alveoli and blood. Accurate
λb:a values are essential for understanding VOCs behavior
within the body, identifying associated biochemical pathways,
and assessing their diagnostic and therapeutic potential. Our
model was trained on a data set comprising λb:a values for 195
VOCs gathered from the literature.35−41 We obtained chemical
structures from PubChem, optimized geometric structures, and
calculated molecular descriptors using ChemDes.42 The GA-
ANN model was designed to efficiently map nonlinear
relationships between these descriptors and λb:a.40,43 The
workflow of this model is illustrated in Figure 2A. After
running the model 20 times with varying initial populations
(Figure S4), we evaluated the frequency of descriptor selection
(Figure S5A), incrementally incorporating the most relevant
variables into the ANN. Six variables proved ideal for our
model (Figures S5B-D and S6), involving two-dimensional
topological and charge indices (MLFER_S, Qmin, XLogP,
ATSC0c) and three-dimensional shape and functionality
(RDF10s, MoRSEU15), suggesting that polarizability, charge
density, and changes in Gibbs energy of solvation predom-
inantly determine the distribution mechanism at the blood-gas
interface.42 This result led to a network structure with an input
layer with 6 neurons, a hidden layer with 11 neurons, and an
output layer with a single neuron for λb:a prediction (Figure
2B). The model underwent extensive training to adjust weights
and biases, demonstrating high reliability and excellent fitting
across validation and test data sets (Training-R2 = 0.95625,
Validation-R2 = 0.90362, Test-R2 = 0.90073) (Figure 2C). The
RMSE for the test set was 0.34230, comparable to the RMSE
of the training set (0.23598), indicating consistent accuracy
and generalizability. Although the R2 and RMSE of nonlinear
model in this study are comparable to those reported by Luan
et al.,41 our model covers a broader range of compounds, thus
expanding its applicability and improving stability. The residual
plot further validated the accuracy of the model, showing a
uniform distribution of residuals without systematic errors in
the QSPR models (Figure 2D).
We further assessed the AD of our model, which is a critical

step in any QSAR research. The AD of a QSAR model refers to
the physicochemical, structural or biological space, knowledge
or information on which the training set is developed and is
applicable for predicting new unknown compounds.44 In this
study, the AD was determined using a leverage approach (eq 1,
Figure 2E). The Williams plot identified two response outliers
with standardized residuals over 3 and four structural outliers
with leverage values exceeding h* for our model (eq 2).
Structural outliers were considered as good leverage points
since the information that these four compounds encode made
the QSAR model more precise.45 Overall, the majority of
VOCs in our study set fall within the AD, with the model
reliably predicting the λb:a for 96.92% (189/195) of the
compounds. We also assessed the AD for 33 exhaled VOCs
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with unknown λb:a, finding most within the AD of the QSPR
model, suggesting their predicted values were likely reliable
and close to experimental measurements (Table S2). Among
the 50 VOCs analyzed, we found diverse λb:a values, with 11
below 10, 25 exceeding 100, and the remainder between 10
and 100. Furthermore, we observed that compounds with the
same substituents showed increased λb:a with higher carbon
numbers, while chemical complexity and the addition of polar
functional groups also raised λb:a. This observation confirmed
that λb:a increased with structural complexity and molecular
polarity.46

After the gaps in λb:a, the focus shifted to determining kpro
and kcl. Our PCBK model can estimate the CA devoid of
environmental impacts, termed as corrected alveolar gradients
(AG′), thereby allowing for quantifying the endogenous
fraction of exhaled VOCs. The equation for AG′ resembles a
straight line of the form

= =AG C C C C(0) ( )A A I I (10)

Inhaled concentration CI is the variable here. Different
constants α were applied to VOCs with varying λb:a. The
complete equations were available in the Supporting
Information (eqs S41, S48 and S54). Our analysis indicated

Figure 2. Partition coefficient and VOCs kinetics estimation for compartment model development. (A) Flowchart of the GA-ANN algorithm-based
QSPR model. (B) The architecture of ANN shows the nonlinear relationship between chemical structures and λb:a. (C) Comparison of
experimental log λb:a versus predicted log λb:a by the QSPR model. (D) Plot of residuals versus experimental log λb:a. (E) Applicability domain of
developed QSPR model. (F) Estimating VOCs production and clearance rates using the affine function of the exhaled and inhaled concentrations.
(G) Comparison of estimated isoprene production and clearance rates with reported values.
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Figure 3. Compilation of exogenous and endogenous VOCs in exhaled breath and their distribution characteristics in human body. (A) AG and
AG′ of 50 exhaled VOCs. The color bar in the top subplot corresponds to the endogenous ratio. The bottom subplot shows the endogenous
contributions of VOCs that may have both exogenous and endogenous origins. (B) VOCs concentration distributions in different compartments
across different age groups. The circle color represents the orders of magnitude, and the circle size indicates the quantity.
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that the constant α was completely determined by physio-
logical quantities including V̇A, Q̇c, conductance parameter
(D), qbro, qfat, λmuc:a/λmuc:b, λb:a and kcl. Under steady-state
conditions, we could measure or estimate all parameters except
kcl. The kcl and kpro are derived from the affine function of
exhaled concentrations (Cbro) and CI (Figure 2F, eqs S13−14
and S30−31). By matching with experimental data, we were
able to fit the intercepts and slopes of the functions, thereby
calculating kcl and kpro. Given the impact of age on these
rates,24 we conducted distinct kcl and kpro estimations for the
50 VOCs across different age groups (Figure S7). Notably,
there existed significant interindividual variations in both kcl
and kpro, hence the estimated kcl and kpro here reflected
population-wide averages.19 Our findings on kpro and kcl
aligned with the limited existing research (Figure 2G). For
instance, our estimated kpro for isoprene in young adults (1.24
× 103 ng·min−1) closely matched previously reported values
(2.43 × 103 ng·min−1), but we observed a zero kcl across age
groups, significantly deviating from the reported 10 L·min−1 in
previous research.19 It is important to note that the small
numerators in the derivative formulas for kcl and kpro may lead
to significant errors if the sample size is not sufficiently large.
Given that previous studies involved significantly fewer
participants (n < 10) than our own (n = 271), the estimated
kcl and kpro in this study should be more reliable. Our estimated
kcl and kpro for most VOCs were within the same order of
magnitude across different age group and aligned with existing
literature.33,47 Moreover, employing kcl and kpro from our
study, the predicted venous concentration of acetone closely
matched the typical blood measurement of 1 mg·L−1, further
validating the accuracy of our model.33

3.3. Inventory and Tissue Distribution of Endoge-
nous and Exogenous VOCs. By applying λb:a, kpro, kcl and
other parameters (Table S2) to the PCBK model, we
determined the gradient α and the AG′. Figure 3A illustrated
the comparison of average alveolar gradients and endogenous
ratios for 50 exhaled VOCs before and after correction,
highlighting more distinct differences postcorrection, thus
improving the differentiation between endogenous and
exogenous VOCs. Specifically, 43 VOCs exhibited an average
AG′ above 0, yet 11 of these had an endogenous ratio under
70%. Accounting for individual variability in alveolar gradients,
32 compounds with average AG′ > 0 and endogenous ratios
>70% were classified as endogenous. Meanwhile, 13 VOCs
were identified as exogenous due to their average AG′ < 0 or
endogenous ratio <60%. The remaining 5 compounds showed
slightly positive average AG′ values with endogenous ratios
between 60% and 70%, indicating a potential mixed origin
from human metabolism and ambient air. Further analysis
revealed their average endogenous contributions (eq S56),
leading to a breakdown of these compounds into endogenous
and exogenous parts for closer scrutiny. We determined the
average endogenous contributions of these 5 VOCs, such as 2-
butanone at 11.95%, n-hexane at 23.10%, (1-methylethyl)-
benzene at 40.69%, pentadecane at 42.46%, and dodecane at
63.13% (Figure 3A). Thus, our study offered a detailed catalog
of the endogenous and exogenous sources of 50 commonly
exhaled VOCs. This comprehensive understanding not only
reveals the interaction between humans and the environment
but also refines the application of exhaled VOCs across various
fields based on their origins.
We additionally employed the PCBK model to analyze the

distribution of VOCs across various tissues (Figure 3B).

Notably, acetone was the most prevalent VOC in all
compartments, with concentrations three to 4 orders of
magnitude higher than other VOCs. Isoprene also exhibited
higher concentrations in all compartments compared to VOCs
with λb:a < 100. This likely arose from acetone and isoprene
having higher kpro values than other VOCs. Beyond these two
compounds, the distribution of other VOCs varied, with those
having a λb:a less than 100 concentrating mostly in the blood,
fat, and alveoli and least in the bronchus. Conversely, highly
soluble VOCs (λb:a > 100) were found at lower concentrations
in the alveolar and bronchial compartments. At the blood-gas
exchange interface, the concentration variation of highly
soluble VOCs spanned two to 3 orders of magnitude,
highlighting the crucial influence of λb:a on the transmembrane
transport efficiency of polar VOCs.32 Unlike VOCs with λb:a <
100, fat appeared to be a key reservoir for highly soluble
VOCs, where their concentrations were similar to those in the
blood. Our analysis also indicated that the distribution patterns
of certain endogenous VOCs might change with age, with
compounds like pentane and undecane showing a negative age
correlation, suggesting their potential as aging biomarkers.48

The compartmental concentrations of endogenous n-hexane,
benzene, heptane, butanoic acid, methyl ester, 3-methyl-
thiophene, methacrolein, 1,4-dioxane, acetoin, benzaldehyde,
and acetophenone increased with age. However, these
substances could not be directly regarded as age biomarkers
since their elevated levels in exhaled breath might also result
from widespread exposure to environmental stressors. This
necessitated further research to isolate age as a determinant.
The distribution of VOCs across age groups showed that age
alone did not dictate concentration differences; intrinsic
production and metabolic rates were also crucial factors.
Similar to acetone and isoprene, 20 VOCs peaked in young
adults, suggesting a link to more active metabolism and
behavioral activities. In contrast, compounds such as 1-
pentene, decane, dodecane, 2-methyl-octane, 2-butanone,
acetic acid, methyl isobutyrate, propanoic acid, 2-methyl-
propanoic acid, butanoic acid, and phenol exhibited the lowest
concentrations in the young adults, possibly due to enzyme-
mediated metabolism or chemical degradation.49−51 The
detailed quantification of VOCs across compartments
enhances our understanding of their absorption, distribution,
metabolism, and excretion mechanism in the body, which is
vital for assessing the health implications of VOC exposure in
different populations.

3.4. Applications of Distinguished Endogenous and
Exogenous VOCs. By accurately distinguishing between
exogenous and endogenous VOCs in exhaled breath, we
enhanced the utility of breathomics in environmental exposure
assessment and diagnosing diseases.52 Breath acts as a pivotal
medium for human-environment interaction, with its chemical
components providing insights into environmental exposure
levels.53 While conventional methods have predominantly
concentrated on external sources of VOC exposure to humans,
the mixture of exogenous and endogenous VOCs in exhaled
breath poses a challenge for effectively assessing external
exposure levels.54 Discerning between these two components
enables a more holistic exposure assessment and a comparison
between external and internal exposures.
Inhaling exogenous VOCs from the environment is a crucial

route to external exposure. We determined the inhalation rates
of exogenous VOCs, including the exogenous fractions of
(exo) endogenous VOCs, using CI and corresponding V̇A
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(Figure 4A), thus quantifying actual exposure doses. The
analysis showed that inhalation rates for 18 exogenous VOCs
were all below 70 ng·min−1, with toluene exhibiting the highest
rate at 65.08 ng·min−1. To assess health risks from exogenous
VOC exposure, we calculated the LADD and compared it with
reference data from the EPA for eight compounds (eq 3,
Figure 4B, Tables S3−4). The LADD values ranged from
17.70 ng·kg−1·day−1 to 422.61 ng·kg−1·day−1. The HQ for these
VOCs varied from 1.95 × 10−5 to 2.84 × 10−2 (eq 4, Figure
4B), with toluene, ethylbenzene, m and p-xylene, and n-hexane
presenting higher risks, highlighting their potential as hazard-
ous pollutants at the sampling sites. Nonetheless, all HQ values
were below the safety threshold of 0.2, indicating that

inhalation exposure alone might not significantly risk health.55

Adjusting for age-related changes in physiological parameters,
we found seniors were at greater risk from inhalation exposure
than young adults and teenagers (Figure 4B), underscoring the
need for cleaner environments for the elderly.
Internal exposure represents the body’s response to

environmental stressors. We combined exposure data from
teenagers, young adults, and seniors to model lifetime internal
exposure to endogenous VOCs. Given the limited reference
values for many VOCs, we estimated the LADD for eight
endogenous VOCs using AG′ (eq 5, Table S3−4). Figure 4C
illustrated the noncancer risks from endogenous VOC
exposure (eq 6). The lifetime average HQ for these VOCs

Figure 4. Personalized application of exogenous and endogenous VOCs in environmental exposure assessment and disease diagnostics. (A) The
inhaled rate and fat bioavailability of exogenous VOCs. (B) LADD and HQ illustrate the noncancer risk assessment of external exposure across
different age groups. (C) Noncancer risk assessment of internal exposure based on LADD and HQ. (D) Density curves display cancer risk
assessment of benzene, ethylbenzene and 1,4-dioxane across different age groups. (E) The relationship between Cfat and AG′ shows the source-sink
conversion for five endogenous VOCs. (F) Demographics of gastrointestinal tumor patients and healthy controls. Age and weight are displayed as
min-max (mean). (G) Performance comparison of GC diagnostic models using Cbroand AG′. (H) Performance comparison of CRC diagnostic
models using Cbro and AG′.
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ranged from 2.56 × 10−5 to 0.208, with most values below the
safety threshold of 0.2, indicating minimal noncancer risks.
Despite its high internal exposure dose (1.14 × 105 ng·kg−1·
day−1), acetone presented the lowest estimated HQ because of
its low toxicity.56 Conversely, phenol exhibited the highest HQ
value among the eight VOCs; followed by benzene (0.0197)
and 1,4-dioxane (0.0184), suggesting potential nervous and
respiratory system impacts. We further assessed the compre-
hensive noncancer risks posed by all eight endogenous VOCs
(HQtotal = 0.256), which indicated higher risks from internal
exposure compared to external exposure (HQtotal = 0.00543−
0.0339). Therefore, regarding human exposure, the external
and internal exposures should be coupled to accurately
evaluate the health risks. Although the noncancer risks did
not exceed the overall safe level of 1,57 cancer-related risks
remained a concern. Figure 4D presented a cancer risk
assessment for three carcinogenic VOCs across different age
groups (eqs 7-8), including two endogenous (benzene and 1,4-
dioxane) and one exogenous (ethylbenzene) VOCs (Table
S5). The estimated lifetime cancer risks for these VOCs fell
between 10−5 and 10−4, pointing to potential carcinogenic risks
from both internal and external exposures.57 Age-specific
analysis showed young adults were most at risk from benzene
and 1,4-dioxane, while seniors faced higher risks from
ethylbenzene, with these carcinogens being the least threat-
ening to teenagers. This suggested that cancer risks from
external exposure increased with age or exposure duration,
whereas internal risks were linked to metabolic and
physiological functions. Therefore, distinguishing exhaled
VOCs origins not only enables accurate quantification of
external environmental exposure doses but also facilitates
assessments of internal health risks. These insights highlight
the different cancer risk mechanisms from internal versus
external exposure, thus calling for stratified strategies in health
risk management.
Quantifying the fate of exogenous VOCs in the body helps

to clarify the long-term effects of these inhaled compounds. Fat
tissues are typically recognized as primary storage sites for
VOCs.25 We evaluated the fat bioavailability of 18 exogenous
VOCs in fat (eq 9), finding a wide range from 0.38% to 100%
(Figure 4A). There was a trend where fat bioavailability
increased with the molecular weight and the presence of polar
functional groups, suggesting compounds with higher molec-
ular weights or polarity were more prone to fat storage.
Notably, nine VOCs showed a fat bioavailability of 100% or
higher, indicating pre-existing accumulation in fat. Further
analysis of the correlation between exogenous VOC fat
concentrations (Cfat) and body fat content revealed that
most Cfat plateaued at fat contents above 10% (Figure S8),
suggesting a dilution effect at higher fat levels. However,
aromatic hydrocarbons such as toluene, ethylbenzene, m- and
p-xylene, styrene, xylene, and (1-methylethyl)-benzene ex-
hibited slight increases with fat content, likely due to their
higher LADD, which could counteract the dilution effect of
increased fat content. Our study suggests that aromatic
hydrocarbons represent the most significant long-term health
risk among all exogenous VOCs.
Differentiating between endogenous and exogenous VOCs

reveals potential flaws in previous assessments of the inhalation
exposure risks. While benzene is typically regarded as
exogenous,24 our findings indicate it may also have
endogenous characteristics, as shown by its AG′. Similar
observations were made for compounds like (1-methylethyl)-

benzene, benzaldehyde, D-limonene, and acetonitrile, poten-
tially due to sink-source conversion effects. To explore the
determinants behind the endogenous output of these five
VOCs, we investigated the relationship between their AG′ and
Cfat (Figure 4E). Our analysis found a significant positive
impact of Cfat on the AG′ of these VOCs. This suggested that
the role of human breath as a VOC source or sink was highly
dependent on Cfat. Specifically, AG′ values turned predom-
inantly positive when Cfat surpassed certain thresholds,
implying that exogenous VOCs could undergo reverse release
after accumulating to a certain extent in fat. We also observed
that the thresholds of Cfat required for this source-sink
conversion varied with the λb:a of each compound. The
highest Cfat threshold required for this conversion was for
acetonitrile, approximately 200 ng·L−1. As λb:a decreased, Cfat
threshold levels followed with benzaldehyde (∼70 ng·L−1),
benzene (∼10 ng·L−1), (1-methylethyl)-benzene (∼3 ng·L−1),
and D-limonene (∼0.4 ng·L−1) in sequence. These results
indicate that compounds with lower λb:a values are more likely
to turn the human body into a secondary source. Furthermore,
due to prolonged exposure and greater accumulation of
environmental substances in fat, adults are more likely to
become secondary sources of these pollutants (Figure 4E).
The similar Cfat levels in young adults and seniors might be due
to dilution effects, indicating that the fat tissue could inhibit
the release of these pollutants. Our findings reveal that under
high environmental concentrations some pollutants migrate
from the alveoli to the capillary and pulmonary veins due to
the partial pressure gradient, making humans act as pollutant
sinks. These compounds can then be distributed and
potentially stored within the body, to be exhaled or otherwise
excreted when external levels decrease.24 Additionally, their
low kcl suggested that these compounds were eliminated slowly
from the body, facilitating their accumulation and gradual
release. This challenges traditional views on the origins of
VOCs and refines our understanding of the health risks they
pose.
The majority of breath research hitherto undertaken has

focused on exploring endogenous biomarkers for diseases.1,3

Although these breathomics-based diagnostic models were
statistically promising, their clinical applicability often fell
short.4 This limitation is mainly due to their failure to
distinguish between exhaled VOC concentration changes
caused by environmental exposure and metabolic changes.
We enhanced disease diagnostic models by incorporating
endogenous VOCs from exhaled breath, using gastrointestinal
tumor patients and healthy controls as examples (Figure 4F).
Recent study has shown that ALDH1A3 gene deletion and
pyruvate metabolism abnormalities in gastric cancer (GC)
patients significantly alter six exhaled VOCs.58 Fourteen
exhaled VOC biomarkers in colorectal (CRC) patients are
closely linked to the gut microbiome.59 We developed models
based on the Cbro and AG′ of these VOC biomarkers. Figures
4G-H illustrates ROC curves for the diagnosis models of GC
and CRC cancers. Analysis using the RF classifier on Cbro of six
GC biomarkers yielded an accuracy of 0.7571, sensitivity of
0.8906, specificity of 0.6842, and AUC of 0.8376, validating the
efficacy of these potential biomarkers. Models developed with
AG′ showed superior performance, with accuracy increasing to
0.9143, sensitivity to 0.9063, specificity to 0.9342, and AUC to
0.9512. Adjusting for environmental influences also signifi-
cantly improved the CRC model’s accuracy by 16.39%,
sensitivity by 20.97%, specificity by 7.94%, and AUC by
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14.44%. These results demonstrated that previous disease
diagnostic models, which failed to account for confounding
effects of environmental VOCs, might have erroneously
interpreted variations in environmental concentrations as
changes in biomarkers. A novel approach recently suggested
simulating environmental VOCs at the time of sampling to
improve model accuracy.60 However, our study employed a
different strategy, utilizing AG′ to refine diagnostic models.
This method directly mitigated the impact of environmental
VOCs, bypassing the biases of algorithmic environmental
concentration predictions. Our findings reveal that AG′-based
models not only enhance prediction accuracy but also improve
the interpretability of disease-specific metabolic changes
against environmental backgrounds. Therefore, our research
identifies a critical gap in the statistical robustness and clinical
applicability of diagnostic models by emphasizing the
importance of considering environmental VOCs.

4. IMPLICATIONS
Several limitations might affect the results obtained in this
study. First, additional factors influencing the solubility of
compound (e.g., blood proteins binding, differences in blood
composition) were not taken into consideration.61 This
omission means that the λb:a predictions should be viewed as
approximations rather than precise values, potentially introduc-
ing bias and uncertainty in estimating VOC tissue concen-
trations. Second, the endogenous compounds identified
include VOCs from gut microbiota and undigested food
residues, which are conceptually different from those produced
by cellular metabolism. Despite collecting exhaled breath
samples after an overnight fast, the influence of food on
exhaled VOCs could not be completely eliminated. Moreover,
due to the unclear mechanism of gut-released VOCs being
exhaled, our developed PCBK model does not explicitly
classify a gut compartment, preventing a clear distinction
between VOCs produced by the host and microbiota. Future
improvements to the PCBK model can provide better technical
support for exploring the exhaled VOC origins.
Overall, we demonstrate that exhaled VOCs are affected by

alveoli, mucus, and external environment conditions, limiting
the effectiveness of directly using exhaled concentrations for
environmental exposure assessments or as disease biomarkers.
We developed the PCBK model that estimates the distribution
of VOCs across various tissues and quantifies the interaction
between environmental exposures and endogenous production.
By accurately calculating alveolar concentrations without
external effects, our model accurately differentiates between
endogenous and exogenous VOCs, essential for personalized
applications based on their origins. The PCBK model
elucidates the complex processes of VOCs absorption,
distribution, metabolism, and excretion within the body.
These advancements enable a more comprehensive assessment
of health impacts from both internal and external exposures,
aiding in the refinement of exposure evaluation systems and
stratified management strategies. Furthermore, accurately
identifying the origin of exhaled VOCs significantly enhances
the accuracy of the breath biopsy, leading to more targeted and
effective healthcare interventions. Therefore, our work
significantly contributes to the fields of public health,
environmental exposure assessment, and precision medicine
by propelling breathomics forward.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.4c04575.

Supplementary Methods, Supplementary Figures (Fig-
ure S1-S8), Supplementary Tables (Table S1-S5) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Xiang Li − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China; Institute of Eco-Chongming (IEC), Shanghai 200062,
P. R. China; orcid.org/0000-0002-0434-3057;
Email: lixiang@fudan.edu.cn

Authors
Zhengnan Cen − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China

Yuerun Huang − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China

Shangzhewen Li − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China

Shanshan Dong − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China

Wenshan Wang − Department of Environmental Science &
Engineering, Fudan University, Shanghai 200438, P. R.
China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.4c04575

Author Contributions
⊥The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript. Z.C. and Y.H. contributed equally to this work.
Funding
National Natural Science Foundation of China (No. 22276038
and 22476023) Agilent Research Gift (No. 4956)
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (No. 22276038 and 22476023) and
Agilent Research Gift (No. 4956).

■ REFERENCES
(1) Djago, F.; Lange, J.; Poinot, P. Induced volatolomics of
pathologies. Nature Reviews Chemistry 2021, 5 (3), 183−196.
(2) Brinkman, P.; Ahmed, W. M.; Gomez, C.; Knobel, H. H.; Weda,
H.; Vink, T. J.; Nijsen, T. M.; Wheelock, C. E.; Dahlen, S.-E.;
Montuschi, P.; Knowles, R. G.; Vijverberg, S. J.; Maitland-van der
Zee, A. H.; Sterk, P. J.; Fowler, S. J. Exhaled volatile organic
compounds as markers for medication use in asthma. Eur. Respir. J.
2020, 55 (2), 2019.
(3) Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.;
Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer
and Possible Biochemical Pathways. Chem. Rev. 2012, 112 (11),
5949−5966.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c04575
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/10.1021/acs.est.4c04575?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c04575/suppl_file/es4c04575_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0434-3057
mailto:lixiang@fudan.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhengnan+Cen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuerun+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shangzhewen+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shanshan+Dong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenshan+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c04575?ref=pdf
https://doi.org/10.1038/s41570-020-00248-z
https://doi.org/10.1038/s41570-020-00248-z
https://doi.org/10.1183/13993003.00544-2019
https://doi.org/10.1183/13993003.00544-2019
https://doi.org/10.1021/cr300174a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr300174a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c04575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(4) Cao, W. Q.; Duan, Y. X. Breath analysis: Potential for clinical
diagnosis and exposure assessment. Clin Chem. 2006, 52 (5), 800−
811.
(5) Pleil, J. D.; Stiegel, M. A.; Risby, T. H. Clinical breath analysis:
discriminating between human endogenous compounds and
exogenous (environmental) chemical confounders. J. Breath Res.
2013, 7 (1), 017107.
(6) Xu, M. J.; Tang, Z. T.; Duan, Y. X.; Liu, Y. GC-Based
Techniques for Breath Analysis: Current Status, Challenges, and
Prospects. Critical Reviews in Analytical Chemistry 2016, 46 (4), 291−
304.
(7) Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M. J.; Salman, D.;
Monks, P. S.; Thomas, P.; Brightling, C. E.; Siddiqui, S.; Greening, N.
J. Breathomics for the clinician: the use of volatile organic compounds
in respiratory diseases. Thorax 2021, 76 (5), 514−521.
(8) Salman, D.; Ibrahim, W.; Kanabar, A.; Joyce, A.; Zhao, B.;
Singapuri, A.; Wilde, M.; Cordell, R. L; McNally, T.; Ruszkiewicz, D.;
Hadjithekli, A.; Free, R.; Greening, N.; Gaillard, E. A; Beardsmore, C.;
Monks, P.; Brightling, C.; Siddiqui, S.; Thomas, C L P. The variability
of volatile organic compounds in the indoor air of clinical
environments. J. Breath Res. 2022, 16 (1), 3565.
(9) Di Gilio, A.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.;
Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.; Barbieri, P.; Licen,
S.; de Gennaro, G. Breath Analysis: Comparison among Methodo-
logical Approaches for Breath Sampling. Molecules 2020, 25 (24),
5823.
(10) Pham, Y. L.; Beauchamp, J. Breath Biomarkers in Diagnostic
Applications. Molecules 2021, 26 (18), 5514.
(11) Westhoff, M.; Friedrich, M.; Baumbach, J. I. Simultaneous
measurement of inhaled air and exhaled breath by double multi-
capillary column ion-mobility spectrometry, a new method for breath
analysis: results of a feasibility study. ERJ. Open Res. 2022, 8 (1),
00493-2021.
(12) Gaude, E.; Nakhleh, M. K.; Patassini, S.; Boschmans, J.;
Allsworth, M.; Boyle, B.; van der Schee, M. P. Targeted breath
analysis: exogenous volatile organic compounds (EVOC) as
metabolic pathway-specific probes. J. Breath Res. 2019, 13 (3),
032001.
(13) Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.;
Cataneo, R. N. Variation in volatile organic compounds in the breath
of normal humans. J. Chromatogr B 1999, 729 (1−2), 75−88.
(14) Belluomo, I.; Boshier, P. R.; Myridakis, A.; Vadhwana, B.;
Markar, S. R.; Spanel, P.; Hanna, G. B. Selected ion flow tube mass
spectrometry for targeted analysis of volatile organic compounds in
human breath. Nat. Protoc 2021, 16 (7), 3419−3438.
(15) Doran, S. L. F.; Romano, A.; Hanna, G. B. Optimisation of
sampling parameters for standardised exhaled breath sampling. J.
Breath Res. 2018, 12 (1), 016007.
(16) Phillips, M.; Sabas, M.; Greenberg, J. Increased pentane and
carbon disulfide in the breath of patients with schizophrenia. Journal
of Clinical Pathology 1993, 46 (9), 861−864.
(17) Westhoff, M.; Kessler, M.; Baumbach, J. I. Alveolar gradients in
breath analysis. A pilot study with comparison of room air and inhaled
air by simultaneous measurements using ion mobility spectrometry. J.
Breath Res. 2023, 17 (4), 046009.
(18) Sukul, P.; Schubert, J. K.; Kamysek, S.; Trefz, P.; Miekisch, W.
Applied upper-airway resistance instantly affects breath components:
a unique insight into pulmonary medicine. J. Breath Res. 2017, 11 (4),
047108.
(19) Unterkofler, K.; King, J.; Mochalski, P.; Jandacka, M.; Koc, H.;
Teschl, S.; Amann, A.; Teschl, G. Modeling-based determination of
physiological parameters of systemic VOCs by breath gas analysis: a
pilot study. J. Breath Res. 2015, 9 (3), 036002.
(20) Trefz, P.; Schmidt, M.; Oertel, P.; Obermeier, J.; Brock, B.;
Kamysek, S.; Dunkl, J.; Zimmermann, R.; Schubert, J. K.; Miekisch,
W. Continuous Real Time Breath Gas Monitoring in the Clinical
Environment by Proton-Transfer-Reaction-Time-of-Flight-Mass Spec-
trometry. Anal. Chem. 2013, 85 (21), 10321−10329.

(21) Cen, Z. N.; Lu, B. Q.; Ji, Y. Y.; Chen, J.; Liu, Y. Q.; Jiang, J. K.;
Li, X.; Li, X. Virus-induced breath biomarkers: A new perspective to
study the metabolic responses of COVID-19 vaccinees. Talanta 2023,
260, 124577.
(22) Zuvela, P.; Macur, K.; Jay Liu, J.; Baczek, T. Exploiting non-
linear relationships between retention time and molecular structure of
peptides originating from proteomes and comparing three multi-
variate approaches. J. Pharm. Biomed. Anal. 2016, 127, 94−100.
(23) Willmann, S.; Lippert, J.; Sevestre, M.; Solodenko, J.; Fois, F.;
Schmitt, W. PK-Sim(R): A physiologically based pharmacokinetic
’whole-body’ model. Biosilico 2003, 1 (4), 121−124.
(24) Sun, X.; He, J. Z.; Yang, X. D. Human breath as a source of
VOCs in the built environment, Part II: Concentration levels,
emission rates and factor analysis. Building and Environment 2017,
123, 437−445.
(25) Abraham, M. H.; Ibrahim, A. Air to fat and blood to fat
distribution of volatile organic compounds and drugs: Linear free
energy analyses. Eur. J. Med. Chem. 2006, 41 (12), 1430−1438.
(26) Shen, H. T.; Han, J. L.; Guan, R. F.; Cai, D. L.; Zheng, Y. B.;
Meng, Z.; Chen, Q.; Li, J. G.; Wu, Y. N. Use of different endpoints to
determine the bioavailability of polychlorinated dibenzo-p-dioxins/
furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in
Sprague-Dawley rats. Sci. Rep-Uk 2022, 12 (1), 3.
(27) Westhoff, M.; Rickermann, M.; Litterst, P.; Baumbach, J. I.
Exogenous factors of influence on exhaled breath analysis by ion-
mobility spectrometry (MCC/IMS). International Journal for Ion
Mobility Spectrometry 2019, 22 (2), 59−69.
(28) Spanel, P.; Dryahina, K.; Smith, D. A quantitative study of the
influence of inhaled compounds on their concentrations in exhaled
breath. J. Breath Res. 2013, 7 (1), 017106.
(29) Schubert, J. K.; Miekisch, W.; Birken, T.; Geiger, K.; Nöldge-
Schomburg, G. F. E. Impact of inspired substance concentrations on
the results of breath analysis in mechanically ventilated patients.
Biomarkers 2005, 10 (2−3), 138−152.
(30) Phillips, M.; Cataneo, R. N.; Chaturvedi, A.; Kaplan, P. D.;
Libardoni, M.; Mundada, M.; Patel, U.; Zhang, X. Detection of an
extended human volatome with comprehensive two-dimensional gas
chromatography time-of-flight mass spectrometry. PLoS One 2013, 8
(9), No. e75274.
(31) Phillips, M.; Greenberg, J.; Sabas, M. Alveolar gradient of
pentane in normal human breath. Free Radical Research 1994, 20 (5),
333−337.
(32) Mochalski, P.; King, J.; Mayhew, C. A.; Unterkofler, K.
Modelling of Breath and Various Blood Volatilomic Profiles-
Implications for Breath Volatile Analysis. Molecules 2022, 27 (8),
2381.
(33) Ager, C.; Unterkofler, K.; Mochalski, P.; Teschl, S.; Teschl, G.;
Mayhew, C. A.; King, J. Modeling-based determination of
physiological parameters of systemic VOCs by breath gas analysis,
part 2. J. Breath Res. 2018, 12 (3), 036011.
(34) Sanna, S.; van Zuydam, N. R.; Mahajan, A.; Kurilshikov, A.;
Vich Vila, A.; Vosa, U.; Mujagic, Z.; Masclee, A. A. M.; Jonkers, D. M.
A. E.; Oosting, M.; Joosten, L. A. B.; Netea, M. G.; Franke, L.;
Zhernakova, A.; Fu, J.; Wijmenga, C.; McCarthy, M. I. Causal
relationships among the gut microbiome, short-chain fatty acids and
metabolic diseases. Nat. Genet. 2019, 51 (4), x.
(35) Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.
Assessment, origin, and implementation of breath volatile cancer
markers. Chem. Soc. Rev. 2014, 43 (5), 1423−1449.
(36) Sprunger, L. M.; Gibbs, J.; Acree, W. E.; Abraham, M. H.
Correlation of human and animal air-to-blood partition coefficients
with a single linear free energy relationship model. Qsar &
Combinatorial Science 2008, 27 (9), 1130−1139.
(37) Abraham, M. H.; Gola, J. R. M.; Gil-Lostes, J.; Acree, W. E.;
Cometto-Muniz, J. E. Determination of solvation descriptors for
terpene hydrocarbons from chromatographic measurements. J.
Chromatogr A 2013, 1293, 133−141.
(38) Meulenberg, C. J. W.; Vijverberg, H. P. M. Empirical relations
predicting human and rat tissue: air partition coefficients of volatile

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c04575
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

L

https://doi.org/10.1373/clinchem.2005.063545
https://doi.org/10.1373/clinchem.2005.063545
https://doi.org/10.1088/1752-7155/7/1/017107
https://doi.org/10.1088/1752-7155/7/1/017107
https://doi.org/10.1088/1752-7155/7/1/017107
https://doi.org/10.1080/10408347.2015.1055550
https://doi.org/10.1080/10408347.2015.1055550
https://doi.org/10.1080/10408347.2015.1055550
https://doi.org/10.1136/thoraxjnl-2020-215667
https://doi.org/10.1136/thoraxjnl-2020-215667
https://doi.org/10.1088/1752-7163/ac3565
https://doi.org/10.1088/1752-7163/ac3565
https://doi.org/10.1088/1752-7163/ac3565
https://doi.org/10.3390/molecules25245823
https://doi.org/10.3390/molecules25245823
https://doi.org/10.3390/molecules26185514
https://doi.org/10.3390/molecules26185514
https://doi.org/10.1183/23120541.00493-2021
https://doi.org/10.1183/23120541.00493-2021
https://doi.org/10.1183/23120541.00493-2021
https://doi.org/10.1183/23120541.00493-2021
https://doi.org/10.1088/1752-7163/ab1789
https://doi.org/10.1088/1752-7163/ab1789
https://doi.org/10.1088/1752-7163/ab1789
https://doi.org/10.1016/S0378-4347(99)00127-9
https://doi.org/10.1016/S0378-4347(99)00127-9
https://doi.org/10.1038/s41596-021-00542-0
https://doi.org/10.1038/s41596-021-00542-0
https://doi.org/10.1038/s41596-021-00542-0
https://doi.org/10.1088/1752-7163/aa8a46
https://doi.org/10.1088/1752-7163/aa8a46
https://doi.org/10.1136/jcp.46.9.861
https://doi.org/10.1136/jcp.46.9.861
https://doi.org/10.1088/1752-7163/acf338
https://doi.org/10.1088/1752-7163/acf338
https://doi.org/10.1088/1752-7163/acf338
https://doi.org/10.1088/1752-7163/aa8d86
https://doi.org/10.1088/1752-7163/aa8d86
https://doi.org/10.1088/1752-7155/9/3/036002
https://doi.org/10.1088/1752-7155/9/3/036002
https://doi.org/10.1088/1752-7155/9/3/036002
https://doi.org/10.1021/ac402298v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac402298v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac402298v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.talanta.2023.124577
https://doi.org/10.1016/j.talanta.2023.124577
https://doi.org/10.1016/j.jpba.2016.01.055
https://doi.org/10.1016/j.jpba.2016.01.055
https://doi.org/10.1016/j.jpba.2016.01.055
https://doi.org/10.1016/j.jpba.2016.01.055
https://doi.org/10.1016/S1478-5382(03)02342-4
https://doi.org/10.1016/S1478-5382(03)02342-4
https://doi.org/10.1016/j.buildenv.2017.07.009
https://doi.org/10.1016/j.buildenv.2017.07.009
https://doi.org/10.1016/j.buildenv.2017.07.009
https://doi.org/10.1016/j.ejmech.2006.07.012
https://doi.org/10.1016/j.ejmech.2006.07.012
https://doi.org/10.1016/j.ejmech.2006.07.012
https://doi.org/10.1038/s41598-022-25042-3
https://doi.org/10.1038/s41598-022-25042-3
https://doi.org/10.1038/s41598-022-25042-3
https://doi.org/10.1038/s41598-022-25042-3
https://doi.org/10.1007/s12127-019-00247-x
https://doi.org/10.1007/s12127-019-00247-x
https://doi.org/10.1088/1752-7155/7/1/017106
https://doi.org/10.1088/1752-7155/7/1/017106
https://doi.org/10.1088/1752-7155/7/1/017106
https://doi.org/10.1080/13547500500050259
https://doi.org/10.1080/13547500500050259
https://doi.org/10.1371/journal.pone.0075274
https://doi.org/10.1371/journal.pone.0075274
https://doi.org/10.1371/journal.pone.0075274
https://doi.org/10.3109/10715769409145633
https://doi.org/10.3109/10715769409145633
https://doi.org/10.3390/molecules27082381
https://doi.org/10.3390/molecules27082381
https://doi.org/10.1088/1752-7163/aab2b6
https://doi.org/10.1088/1752-7163/aab2b6
https://doi.org/10.1088/1752-7163/aab2b6
https://doi.org/10.1038/s41588-019-0350-x
https://doi.org/10.1038/s41588-019-0350-x
https://doi.org/10.1038/s41588-019-0350-x
https://doi.org/10.1039/C3CS60329F
https://doi.org/10.1039/C3CS60329F
https://doi.org/10.1002/qsar.200860078
https://doi.org/10.1002/qsar.200860078
https://doi.org/10.1016/j.chroma.2013.03.068
https://doi.org/10.1016/j.chroma.2013.03.068
https://doi.org/10.1006/taap.2000.8929
https://doi.org/10.1006/taap.2000.8929
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c04575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


organic compounds. Toxicol. Appl. Pharmacol. 2000, 165 (3), 206−
216.
(39) Mochalski, P.; King, J.; Kupferthaler, A.; Unterkofler, K.;
Hinterhuber, H.; Amann, A. Human Blood and Plasma Partition
Coefficients for C4-C8 n-alkanes, Isoalkanes, and 1-alkenes. Interna-
tional Journal of Toxicology 2012, 31 (3), 267−275.
(40) Konoz, E.; Golmohammadi, H. Prediction of air-to-blood
partition coefficients of volatile organic compounds using genetic
algorithm and artificial neural network. Anal. Chim. Acta 2008, 619
(2), 157−164.
(41) Luan, F.; Liu, H. T.; Ma, W. P.; Fan, B. T. QSPR analysis of air-
to-blood distribution of volatile organic compounds. Ecotoxicology and
Environmental Safety 2008, 71 (3), 731−739.
(42) Dong, J.; Cao, D. S.; Miao, H. Y.; Liu, S.; Deng, B. C.; Yun, Y.
H.; Wang, N. N.; Lu, A. P.; Zeng, W. B.; Chen, A. F. ChemDes: an
integrated web-based platform for molecular descriptor and finger-
print computation. Journal of Cheminformatics 2015, 7, 60.
(43) Fan, D. Q.; Yu, R.; Fu, S. Y.; Yue, L.; Wu, C. F.; Shui, Z. H.;
Liu, K. N.; Song, Q. L.; Sun, M. J.; Jiang, C. Y. Precise design and
characteristics prediction of Ultra-High Performance Concrete
(UHPC) based on artificial intelligence techniques. Cement &
Concrete Composites 2021, 122, 104171.
(44) Ghanei-Nasab, S.; Hadizadeh, F.; Foroumadi, A.; Marjani, A. A
QSAR Study for the Prediction of Inhibitory Activity of Coumarin
Derivatives for the Treatment of Alzheimer’s Disease. Arabian Journal
for Science and Engineering 2021, 46 (6), 5523−5531.
(45) Galimberti, F.; Moretto, A.; Papa, E. Application of
chemometric methods and QSAR models to support pesticide risk
assessment starting from ecotoxicological datasets. Water Res. 2020,
174, 115583.
(46) Agapiou, A.; Amann, A.; Mochalski, P.; Statheropoulos, M.;
Thomas, C. L. P. Trace detection of endogenous human volatile
organic compounds for search, rescue and emergency applications.
Trac-Trend Anal Chem. 2015, 66, 158−175.
(47) Szabó, A.; Unterkofler, K.; Mochalski, P.; Jandacka, M.;
Ruzsanyi, V.; Szabó, G.; Mohácsi, A.; Teschl, S.; Teschl, G.; King, J.
Modeling of breath methane concentration profiles during exercise on
an ergometer. J. Breath Res. 2016, 10 (1), 017105.
(48) Jia, Z. A.; Thavasi, V.; Venkatesan, T.; Lee, P. Y. Breath
Analysis for Lung Cancer Early Detection-A Clinical Study.
Metabolites 2023, 13 (12), 1197.
(49) Weber, R.; Streckenbach, B.; Welti, L.; Inci, D.; Kohler, M.;
Perkins, N.; Zenobi, R.; Micic, S.; Moeller, A. Online breath analysis
with SESI/HRMS for metabolic signatures in children with allergic
asthma. Frontiers in Molecular Biosciences 2023, 10, 1154536.
(50) Wang, N.; Pugliese, G.; Carrito, M.; Moura, C.; Vasconcelos,
P.; Cera, N.; Li, M.; Nobre, P.; Georgiadis, J. R.; Schubert, J. K.;
Williams, J. Breath chemical markers of sexual arousal in humans. Sci.
Rep-Uk 2022, 12 (1), 6.
(51) Porto-Figueira, P.; Pereira, J. A. M.; Cámara, J. S. Exploring the
potential of needle trap microextraction combined with chromato-
graphic and statistical data to discriminate different types of cancer
based on urinary volatomic biosignature. Anal. Chim. Acta 2018,
1023, 53−63.
(52) Das, S.; Pal, M. Review-Non-Invasive Monitoring of Human
Health by Exhaled Breath Analysis: A Comprehensive Review. J.
Electrochem. Soc. 2020, 167 (3), 037562.
(53) Webster, E. M.; Qian, H.; Mackay, D.; Christensen, R. D.;
Tietjen, B.; Zaleski, R. Modeling Human Exposure to Indoor
Contaminants: External Source to Body Tissues. Environ. Sci. Technol.
2016, 50 (16), 8697−8704.
(54) Valcke, M.; Krishnan, K. Assessing the impact of the duration
and intensity of inhalation exposure on the magnitude of the
variability of internal dose metrics in children and adults. Inhalation
Toxicology 2011, 23 (14), 863−877.
(55) Wang, H.; Wang, H. M.; Wang, K. L.; Xiong, J. Y.; Huang, S.
D.; Wolfson, J. M.; Koutrakis, P. Characterization of chemical
transport in human skin and building material. J. Hazard Mater. 2023,
458, 131917.

(56) Gentry, P. R.; Covington, T. R.; Clewell, H.; Anderson, M. E.
Application of a physiologically based pharmacokinetic model for
reference dose and reference concentration estimation for acetone. J.
Toxicol. Env. Health Part A 2003, 66 (23), 2209−2225.
(57) Pinthong, N.; Thepanondh, S.; Kondo, A. Source Identification
of VOCs and their Environmental Health Risk in a Petrochemical
Industrial Area. Aerosol and Air Quality Research 2022, 22 (2),
210064.
(58) Chen, J.; Ji, Y. Y.; Liu, Y. Q.; Cen, Z. N.; Chen, Y. W.; Zhang,
Y. X.; Li, X. W.; Li, X. Exhaled volatolomics profiling facilitates
personalized screening for gastric cancer. Cancer Letters 2024, 590,
216881.
(59) Liu, Y. Q.; Ji, Y. Y.; Chen, J.; Zhang, Y. X.; Li, X. W.; Li, X.
Pioneering noninvasive colorectal cancer detection with an AI-
enhanced breath volatilomics platform. Theranostics 2024, 14 (11),
4240−4255.
(60) Tsou, P. H.; Lin, Z. L.; Pan, Y. C.; Yang, H. C.; Chang, C. J.;
Liang, S. K.; Wen, Y. F.; Chang, C. H.; Chang, L. Y.; Yu, K. L.; Liu, C.
J.; Keng, L. T.; Lee, M. R.; Ko, J. C.; Huang, G. H.; Li, Y. K. Exploring
Volatile Organic Compounds in Breath for High-Accuracy Prediction
of Lung Cancer. Cancers 2021, 13 (6), 1431.
(61) Kramer, C.; Mochalski, P.; Unterkofler, K.; Agapiou, A.;
Ruzsanyi, V.; Liedl, K. R. Prediction of blood:air and fat:air partition
coefficients of volatile organic compounds for the interpretation of
data in breath gas analysis. J. Breath Res. 2016, 10 (1), 017103.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c04575
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

M

https://doi.org/10.1006/taap.2000.8929
https://doi.org/10.1177/1091581812442689
https://doi.org/10.1177/1091581812442689
https://doi.org/10.1016/j.aca.2008.04.065
https://doi.org/10.1016/j.aca.2008.04.065
https://doi.org/10.1016/j.aca.2008.04.065
https://doi.org/10.1016/j.ecoenv.2007.10.024
https://doi.org/10.1016/j.ecoenv.2007.10.024
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1016/j.cemconcomp.2021.104171
https://doi.org/10.1016/j.cemconcomp.2021.104171
https://doi.org/10.1016/j.cemconcomp.2021.104171
https://doi.org/10.1007/s13369-020-05064-7
https://doi.org/10.1007/s13369-020-05064-7
https://doi.org/10.1007/s13369-020-05064-7
https://doi.org/10.1016/j.watres.2020.115583
https://doi.org/10.1016/j.watres.2020.115583
https://doi.org/10.1016/j.watres.2020.115583
https://doi.org/10.1016/j.trac.2014.11.018
https://doi.org/10.1016/j.trac.2014.11.018
https://doi.org/10.1088/1752-7155/10/1/017105
https://doi.org/10.1088/1752-7155/10/1/017105
https://doi.org/10.3390/metabo13121197
https://doi.org/10.3390/metabo13121197
https://doi.org/10.3389/fmolb.2023.1154536
https://doi.org/10.3389/fmolb.2023.1154536
https://doi.org/10.3389/fmolb.2023.1154536
https://doi.org/10.1038/s41598-022-10325-6
https://doi.org/10.1016/j.aca.2018.04.027
https://doi.org/10.1016/j.aca.2018.04.027
https://doi.org/10.1016/j.aca.2018.04.027
https://doi.org/10.1016/j.aca.2018.04.027
https://doi.org/10.1149/1945-7111/ab67a6
https://doi.org/10.1149/1945-7111/ab67a6
https://doi.org/10.1021/acs.est.6b00895?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b00895?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3109/08958378.2011.609918
https://doi.org/10.3109/08958378.2011.609918
https://doi.org/10.3109/08958378.2011.609918
https://doi.org/10.1016/j.jhazmat.2023.131917
https://doi.org/10.1016/j.jhazmat.2023.131917
https://doi.org/10.1080/713853996
https://doi.org/10.1080/713853996
https://doi.org/10.4209/aaqr.210064
https://doi.org/10.4209/aaqr.210064
https://doi.org/10.4209/aaqr.210064
https://doi.org/10.1016/j.canlet.2024.216881
https://doi.org/10.1016/j.canlet.2024.216881
https://doi.org/10.7150/thno.94950
https://doi.org/10.7150/thno.94950
https://doi.org/10.3390/cancers13061431
https://doi.org/10.3390/cancers13061431
https://doi.org/10.3390/cancers13061431
https://doi.org/10.1088/1752-7155/10/1/017103
https://doi.org/10.1088/1752-7155/10/1/017103
https://doi.org/10.1088/1752-7155/10/1/017103
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c04575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

